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Abstract
The emergence of Multi-modal Large Language Models (MLLMs)
presents new opportunities for chart understanding. However, due
to the fine-grained nature of these tasks, applying MLLMs typically
requires large, high-quality datasets for task-specific fine-tuning,
leading to high data collection and training costs. To address this,
we propose ChartCards, a unified chart-metadata generation frame-
work for multi-task chart understanding. ChartCards systematically
synthesizes various chart information, including data tables, visu-
alization code, visual elements, and multi-dimensional semantic
captions. By structuring this information into organized metadata,
ChartCards enables a single chart to support multiple downstream
tasks, such as text-to-chart retrieval, chart summarization, chart-to-
table conversion, chart description, and chart question answering.
Using ChartCards, we further construct MetaChart, a large-scale
high-quality dataset containing 10,862 data tables, 85𝐾 charts, and
170𝐾 high-quality chart captions. We validate the dataset through
qualitative crowdsourcing evaluations and quantitative fine-tuning
experiments across various chart understanding tasks. Fine-tuning
six different models on MetaChart resulted in an average perfor-
mance improvement of 5% across all tasks. The most notable im-
provements are seen in text-to-chart retrieval and chart-to-table
tasks, with Long-CLIP and Llama 3.2-11B achieving improvements
of 17% and 28%, respectively.
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1 Introduction
Charts, representing complex data visually, are widely used in daily
life [6, 38]. However, as the volume of charts increases and their
formats become more diverse, traditional manual analysis methods
struggle to meet the growing demands for both efficiency and accu-
racy. To address this, automated chart understanding has emerged
as a key solution [32, 39, 45, 46]. In recent years, the rapid devel-
opment of Multimodal Large Language Models (MLLMs), such as
OpenAI-o1 [37], Flamingo [1], BLIP2 [18] andCLIP [8], has provided
new methods for automated chart understanding. By jointly learn-
ing visual and linguistic information, these models have demon-
strated powerful cross-modal understanding capabilities [46, 51].

Despite their success in general tasks, adapting MLLMs for chart
understanding remains challenging [23, 40, 55]. Chart understand-
ing tasks need finer-grained processing capabilities, often requiring
additional large-scale, high-quality chart-specific data to train or
fine-tune models. Moreover, chart understanding involves multiple
downstream tasks, such as text-to-chart retrieval [47], chart de-
scription [49], chart question answering (ChartQA) [12, 14, 34, 50],
chart-to-table [23], and chart summary [15, 41]. Each task imposes
distinct data annotation requirements. For example, ChartQA tasks
require precise numerical annotations, while summarization tasks
focus more on semantic information descriptions. This annotation
heterogeneity complicates data organization and increases the cost
of cross-task dataset integration.

Recently, researchers have introduced various chart-related
datasets to advance chart understanding, as summarized in Ta-
ble 1. However, problems remain in three key aspects: metadata
and task diversity, dataset size and scalability, and quality valida-
tion. Regarding metadata and task diversity, many datasets provide
limited metadata, restricting them to a single chart understanding
task [12, 14, 15, 34, 36, 41] or a narrow set of multi-task applica-
tions [35]. In terms of dataset size and scalability, while some multi-
task datasets support diverse chart understanding tasks, their over-
all size remains limited [9, 49], or they are constructed from existing
data datasets, limiting their scalability [33, 35]. For quality valida-
tion, many studies rely on closed-set evaluation rather than cross-
dataset evaluation [11, 49], potentially introducing bias. Addition-
ally, most datasets lack human-based evaluation [9, 11, 33, 35, 49].
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Table 1: Comparison with Existing Chart-related Training Datasets (DT means Data Tables, VE means Visual Elements, VC
means Visualization Code, and CC means Chart Captions).

Task Diversity Datasets Metadata #-Chart Data Quality Evaluation
#DT #VE # #VC #CC #Charts Types Generation Benchmark Human Check

Single Task

DVQA [12] 200K / / / 200K 1 Rule-Based Closed-Set ✗

ChartQA [34] 20.8K 20.8K / / 20.8K 3 Human-Based Closed-Set ✓

PlotQA [36] 224K 224K / / 224K 3 Rule-Based Closed-Set ✗

Chart-to-text [15] 44k / / 44k 44k 6 LLM-Based Closed-Set ✗

Vistext [41] 12k / / 24k 12K 3 Human-Based Closed-Set ✓

FigureQA [14] 100K / / / 100K 5 Rule-Based Closed-Set ✗

Multi Tasks

Unichart [33] 601K / / 481K 611K 3 Collection-Based Cross-Dataset ✗

ChartLlama [9] 11K / / / 11K 10 LLM-Based Cross-Dataset ✗

ChartSFT [35] 911K / / 1M 39M 9 Collection-Based Cross-Dataset ✗

NovaChart [11] 47K 47K 47K / 47K 18 LLM-Based Closed-Set ✗

MetaChart (ours) 85K 85K 85K 170K 85K 11 LLM-Based Cross-Dataset ✓

Chart-to-table

Convert the chart into data table.Q4:

Q5:

Q2:

Q3:

ChartQA

Chart Description This chart shows trends in chronic disease prevalence in Washington State and its counties 
from 2007 to 2014, using data from fee-for-service Medicare beneficiaries. The data in the 
figure shows that the prevalence of chronic diseases was 38% in 2007 and has increased 
every year since then. By 2008 and 2009, the prevalence had risen to 42% and 46%, 
respectively. In 2010, the prevalence rate increased further to 54%, and in 2011 it fell slightly 
to 51%. There was a significant increase in the prevalence of chronic diseases from 2012, 
reaching 59%, and rising to 63% and 69% in 2013 and 2014, respectively. Overall, the 
prevalence rate showed an increasing trend year by year, especially after 2010, the increase 
rate was more significant, especially in 2012 and 2014, the largest increase.

Between 2007 and 2014, the prevalence of chronic diseases in Washington State 
increased. Since 2007, the prevalence rate has been 38%, increasing year by year, 
reaching 69% in 2014. Prevalence continued to increase throughout the period, especially 
after 2010.

What was the prevalence of chronic 

disease in Washington State in 2010?

Summarize the chart and overview of data 
for a comprehensive understanding.

Describe the detailed information and 
main findings shown in the chart.

Q1:
A1

Text-to-chart Retrieval

Find a chart about the epidemic in 
Washington State in the last few years?

54%

|Year | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014|


|Prevalence Rate (%) | 38 | 42 | 46 | 54 | 51 | 59 | 63 | 69|

A4:

A3:

A2:

A5:
Chart Summary

Candidate 

   Charts

Search a chart

MLLM
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m

ag
e


En
co

d
er

   Text
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√

Figure 1: Example of five downstream tasks corresponding to a chart: Text-to-chart retrieval (Q1), chart description (Q2),
ChartQA (Q3), chart-to-table (Q4), and chart summary (Q5). Each task will produce the corresponding result, A1 to A5.

To address the issues, we propose ChartCards, a novel chart-
metadata generation framework for multi-task chart understanding.
First, we design a unified structured representation format for chart
metadata, including data table, visualization code, visual element
information, analytic task, and captions for chart overview and
chart analysis. This format enables direct extraction from a single
chart and supports multiple downstream tasks, such as text-to-chart
retrieval, chart-to-description, chart question answering, chart-to-
table, and chart-to-summary, as shown in Figure 1. Next, we in-
troduce a parameterized programmable chart generation pipeline,
which facilitates the rapid creation of large-scale, diverse chart meta-
data through flexible configuration options. It overcomes the speed
limitations of manual data collection and significantly enhances
scalability. Leveraging the ChartCards framework, we establish a
large-scale high-quality dataset, MetaChart, consisting of 10,862
data tables, 85𝐾 raw charts, and 170𝐾 high-quality chart captions.
Finally, we implement a dual-quality verification mechanism for
the generated dataset. On the one hand, we conduct crowdsourced
evaluations to assess generated chart captions’ semantic and visual

consistency. On the other hand, we validate the framework’s effec-
tiveness through extensive fine-tuning cross-dataset experiments,
demonstrating substantial performance improvements across mul-
tiple downstream chart understanding tasks.

Contributions. The main contributions of this paper are:

(1) Chart-Metadata Generation Framework. We propose Chart-
Cards, an automated and scalable chart-metadata generation frame-
work, capable of efficiently generating large-scale data for multi-
task chart understanding.

(2)MetaChart Dataset.Using the ChartCards framework, we build
a large-scale high-quality dataset, MetaChart, including 10,862 data
tables, 85𝐾 charts, and 170𝐾 high-quality chart captions.

(3) Extensive Experiments. Through qualitative human-based
evaluation and quantitative fine-tuning experiments on down-
stream tasks, we validate the effectiveness of our data generation
framework and demonstrate that our MetaChart significantly en-
hancesmodel performance. The six state-of-the-artmodels achieved
an average improvement of 5% across five tasks.

2
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2 Related Work
2.1 Chart Understanding Tasks and Datasets
In recent years, with the rapid development of MLLMs [4, 17, 19,
20, 27], cross-modal understanding technology based on charts
has gradually become a research hotspot [42]. This field mainly
revolves around the bidirectional semantic mapping between charts
and texts, forming several challenging sub-task systems. Text-to-
chart retrieval requires the model to find the most relevant chart for
a query through semantic matching. CRBench [47], the first special-
ized benchmark, supports this research. Chart-to-table conversion
extracts numerical data from visual elements, requiring strong spa-
tial perception and structured data reconstruction. Datasets like
StructChart [48] provide paired samples with precise annotations
to train robust models. In the dimension of semantic abstraction,
existing research divides it into two progressive levels: chart sum-
mary extracts key trends, while chart description provides detailed
analysis. Besides the above four chart tasks, ChartQA [34] is a more
comprehensive evaluation task requiring the model to integrate
multi-dimensional capabilities such as visual parsing, semantic rea-
soning, and domain knowledge. However, existing chart datasets
often support only 1-2 tasks. While NavoChart [49] enables multi-
ple tasks, it lacks human evaluation and public dataset validation.
ChartCards, which we proposed, is a scalable framework. The train-
ing data generated by this framework, MetaChart, has not only
undergone quality validation through crowdsourcing experiments
but also significantly improved the model’s performance on down-
stream chart tasks.

2.2 Multi-modal Large Language Models
In recent years, MLLMs have made breakthrough progress in the
field of cross-modal semantic alignment through pre-training ar-
chitecture innovations like cross-modal attention mechanisms [3,
16, 52, 52] and post-training optimization strategies like [5, 10].
The research paradigm has gradually evolved from simple feature-
level fusion to cognitive-level interaction. Typical works such as
Flamingo [1] implement multimodal sequence modeling through
gated cross-attention, while BLIP-2 [18] explores the application of
lightweight adapters such as Q-Former in cross-modal alignment.
These technical breakthroughs have significantly improved the
models’ performance on many natural image tasks [8, 21, 44]. In
view of the great achievements of multimodal large models, many
researchers use chart-related data to train and fine-tune these mod-
els so that multimodal models can obtain multiple chart understand-
ing capabilities [24, 28, 49]. Unichart [33] crawled a large amount of
data while integrating current public data sets in order to enable the
model to complete multiple chart tasks such as chart-to-table [23];
ChartAssistant [35] pre-trained and fine-tuned Unichart as the base
model, collected training data from 8 public data sets, and further
expanded the training data through data enhancement, and finally
successfully achieved SOTA on multiple tasks; Furthermore, Tiny-
Chart [54] collected data on nearly 20 public data sets, and the
most popular model with 3B parameters exceeded the performance
of ChartAssistant with 13B parameters on multiple benchmarks.
Although performance can be improved by continuously increasing
training data, it is very costly to collect chart data frommultiple data

sources. ChartCards proposed in this paper can generate training
data in batches while reducing the cost of data production.

3 ChartCards
In this section, we will introduce the ChartCards framework in
detail. First, we will explore the process of data collection and how
to automatically generate diverse charts based on this data. Next,
we will introduce the Chart Metadata generated by ChartCards and
its specific information. Finally, we will introduce MetaChart, a
large-scale and high-quality dataset built based on ChartCards.

3.1 Data Collection and Visualization

Step 1: Data Collection. The first step in generating high-quality
semantic insights is selecting a reliable and diverse data source. To
ensure the authenticity and usability of the data, we chose Kag-
gle [13] as our primary dataset provider. Most Kaggle datasets
originate from real-world applications or competitions, and its rat-
ing system allows for effective initial filtering, ensuring that the
selected datasets are well-structured, rich in content, and suitable
for visualization.

As shown in Figure 2:❶. During the data selection phase, we
retained only datasets with a rating higher than 8.0 to enhance data
quality. To further improve data usability, we performed a cleaning
and preprocessing step, which included: 1. Removing rows with
missing values to ensure data integrity. 2. Discarding CSV files
containing only textual information without numerical values to
ensure usability for numerical analysis and visualization. 3. Elimi-
nating duplicate columns with identical data reduces redundancy
and enhances data quality.

After filtering, we collected a total of 10,862 CSV tables, covering
a wide range of topics and statistical distributions.

Step 2: Splitting Tables Automatically. As shown in Figure 2:❷,
we transform 10,862 CSV tables into 85𝐾 JSON files. We employed
DeepEye [29–31], an advanced automatic visualization recommen-
dation system, during the transformation. This system intelligently
parses structured data and recommends the most suitable visual-
ization types (e.g., line charts, bar charts, scatter plots) based on
data types and statistical features. Through this approach, Deep-
Eye decomposes each CSV file into multiple corresponding JSON
files, with each JSON file representing a complete visualization
description, including data, visual encoding, and metadata.

Specifically, DeepEye first parses the data in the CSV files, iden-
tifies their structures and underlying patterns, and then generates
multiple visualization schemes based on the data characteristics.
Each scheme corresponds to an independent JSON file, which not
only contains the raw chart data but also records the chart type,
visual encoding configurations like legend data, and related meta-
data in detail. In this way, a single CSV file can generate multiple
JSON files, each corresponding to a unique visual representation,
significantly enhancing the diversity and coverage of the dataset.

Ultimately, we generated 85𝐾 JSON files, which provide a rich
data foundation for subsequent chart understanding tasks (e.g.,
chart summarization, chart captioning, chart question answering,
and chart retrieval) and ensure the data’s scalability and usability
through a standardized format. Through this process, we efficiently
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1
Data Table

Visualization Code

Visual Element

           Year              2007 | 2008 | 2009 | 2010 | ...  

           

 Prevalence Rate  |   38       42    |   46   |   54   | ... |

  |

{   

    "Title": "Chronic Condition Prevalence in Washington State

                     and Counties",

    "color": {

                       "line":  "red",

                       "point": "blue",

                    }

    "dash":  "True",

      



}

...      ...

     "type":  "line chart"

# import vis package
import matplotlib.pyplot as plt
# Create the figure and axis 
ax = plt.subplots(figsize=(8.0, 6.0))
# Add labels for each point (optional)
for i, txt in enumerate(data): 

   ax.annotate(txt, (x[i], y[i]), xytext=(0,5)

.......    


plt.show()
# Display the plot 


....... 

6.Correlation  7.Order       8.Retrieval       9.Range   10.Anomaly          
1.Extreme       2.Cluster    3.Reasoning    4.Filter     5.Distribution

Statistic Analysis

This line chart, "Chronic Condition Prevalence in Washington State 
and Counties," illustrates the trend of chronic condition prevalence 
among fee-for-service Medicare beneficiaries in Washington State 
from 2007 to 2014. The chart's x-axis plots the years, while the y-axis 
measures the prevalence rate as a percentage.  By tracking the trend 
over time, this visualization provides valuable insights into the 
growing burden of chronic conditions on the state's healthcare 
system. It serves as a crucial tool for policymakers and healthcare 
professionals to inform decision-making and resource allocation 
strategies.

The prevalence of chronic conditions in Washington State and its 
counties has been steadily increasing over the years, with a notable 
upward trend. The range of prevalence rates is wide, spanning from 
38% to 69%, indicating significant variability across different counties. 
The correlation between years and prevalence rates is strong, with a 
consistent increase in rates over time. However, there are fluctuations 
in the rate of increase, suggesting potential underlying factors 
influencing the trend. The ordering of the data reveals a clear pattern 
of rising prevalence rates, with no noticeable decline or plateau.

FilesTables

Figure 2: The ChartCards framework, a running example of the chart and corresponding metadata.

converted from structured data to multi-task chart understanding
data, providing a high-quality and diverse dataset.

Step 3: Visualization Mapping Based on Templates. As shown
in Figure 2:❸, the third step involves mapping the generated JSON
files into visual charts. To further enhance the diversity of visual
charts, we predefined three visualization syntax templates: Mat-
plotlib, Vega-Lite, and Plotly, based on the JSON file format gener-
ated by DeepEye. These templates enable direct mapping of fields
from JSON files to visualization code, allowing for the rapid gener-
ation of corresponding charts.

While designing these templates, we observed that many chart
types, despite their significant visual differences, share minimal
differences at the code level. For example, an area chart and a line
chart differ by only a single boolean parameter. Leveraging this in-
sight, we incorporated numerous similar configuration options into
the three visualization syntax templates, enabling the generation of
a wide variety of visually distinct chart types by adjusting a small
set of parameters. This design not only significantly enhances the
richness of visual charts but also simplifies the chart generation
process, making the conversion from JSON files to visual charts
more efficient and flexible.

Through this approach, we are able to generate multiple visual
representations from the same JSON data, further expanding the
diversity and applicability of the dataset and providing broader data
support for subsequent chart understanding tasks.

3.2 Chart Metadata
Based on the data collection and auto chart visualization process,
we can obtain various chart-related data, including chart table infor-
mation, chart visualization code, and visual element configurations.
These components form the foundational metadata for multi-task
chart understanding.

In addition to these, we generate 10 chart-related low-level analy-
sis tasks using local Python code, as shown in Figure 2. These tasks

include statistical feature extraction (e.g., mean, median, standard
deviation), trend analysis (e.g., increasing, decreasing, stable), and
pattern detection, like finding outliers. These low-level analyses
provide essential insights into the underlying data, enabling models
to perform tasks such as numerical reasoning, trend prediction, and
anomaly detection.

Furthermore, we generate chart captions from two dimensions
using LLaMA 3.1-70B [7], as shown in Figure 2:❹. The first dimen-
sion, chart overview, provides a high-level summary of the chart’s
content. The second dimension, chart analysis, offers a low-level
interpretation of the data, highlighting key insights and patterns.
These captions not only enhance the interpretability of the charts
but also serve as valuable training data for tasks like chart summa-
rization and question answering.

By combining the generated low-level analysis tasks and multi-
dimensional chart captions with the original chart data, we now
possess a rich collection of chart metadata that supports multiple
downstream chart understanding tasks. This comprehensive meta-
data enables a wide range of applications, from numerical reasoning
and trend analysis to semantic interpretation and summarization,
ensuring that our dataset is not only diverse and scalable but also
highly practical for real-world chart analysis scenarios.

3.3 An Overview of MetaChart Datasets
We further build a large-scale and high-quality dataset MetaChart
using the ChartCards framework. In this section, we provide an
overview of existing chart-related training datasets and highlight
the advantages ofMetaChart based on Table 1. Unlikemany existing
datasets that focus on single tasks or limited metadata, MetaChart
stands out as a comprehensive and versatile dataset designed for
multi-task learning. Our automated data generation framework,
based on ChartCards, has produced 85𝐾 chart-table pairs, 170𝐾
chart captions, and 85𝐾 visualization codes, making it one of the
largest andmost diverse datasets in the field. The framework’s input,
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Figure 3: Evaluation of caption quality on four aspects

which relies on CSV files, ensures exceptional scalability, allowing
for easy expansion and adaptation to future needs. Additionally,
MetaChart incorporates rich metadata, including data tables (DT),
visual elements (VE), visualization codes (VC), and chart captions
(CC), providing a holistic foundation for model training.

3.4 Crowsourcing Validation on MetaChart
To validate the quality of the generated captions, we conducted a
crowdsourcing experiment involving 100 workers who evaluated
the captions based on four criteria: completeness, consistency, di-
versity, and readability. Figure 3 showed that approximately 90%
of the workers rated the captions with a score of 3 or higher, indi-
cating high-quality caption generation. This combination of scala-
bility, metadata richness, and high-quality annotations positions
MetaChart as a superior dataset for advancing research in chart-
related tasks, offering a robust foundation for both current and
future applications.

4 Experiments
This section presents how to useMetaChart to helpMLLMs improve
their capabilities on five downstream chart understanding and rea-
soning tasks: Text-to-chart retrieval, chart description, chart sum-
mary, chart-to-table, and chartQA. For the text-to-retrieval tasks,
we employ three retrieval-capable models: CLIIP-DPR [26], UniVL-
DR [26], and Long-CLIP [53]. These models are chosen for their
ability to map textual queries to visual representations effectively.
For the four left generative tasks, we employ three state-of-the-art
MLLMs: Qwen2-VL-7B [43], Llama 3.2-11B [7], and LLaVA-NeXT-
Mistral-7B [25]. All the training data for the six models for the five
tasks are from MetaChart.

4.1 Text-to-chart Retrieval
4.1.1 Test Datasets Overview. We conduct evaluation experiments
on the text-to-retrieval task using CRBench [47], which consists
of precise queries and fuzzy queries. This benchmark contains 326
queries and 21,862 charts.

4.1.2 Metrics. We evaluate the retrieval performance using five
standard metrics, where higher values indicate better performance
for all metrics. R@K (K=1,5,10) measures the percentage of queries

where the relevant document appears in the top K retrieved re-
sults. MRR@10 (Mean Reciprocal Rank at top 10) evaluates the
average reciprocal of the rank at which the first relevant document
is retrieved. NDCG@10 (Normalized Discounted Cumulative Gain
at top 10) measures the ranking quality by considering both the
relevance and position of retrieved results.

4.1.3 Training Details. When training text-to-retrieval models, we
select CLIP-DPR [8], UniVL-DR [26], and Long-CLIP [53] as base
models. Based on the MetaChart datasets we made, we use all
chart overview captions 𝑐𝑜 , chart analysis captions 𝑐𝑎, and relevant
charts 𝑐 as training sets. During training, we shuffled all the 85𝐾
charts with two relevant captions and used 𝑐𝑐 to represent random
captions. Subsequently, we apply the contrastive learning based on
the CLIP framework to optimize the model. The contrastive loss
function is defined as:

𝐿𝑖 = − log
exp(𝑠𝑖𝑚 (𝑐𝑖 ,𝑐𝑐𝑖 )/𝜏 )∑𝑁
𝑗=1 exp

(𝑠𝑖𝑚 (𝑐𝑖 ,𝑐𝑐 𝑗 )/𝜏 )
, 𝑐𝑐𝑖 , 𝑐𝑐 𝑗 ∈ [𝑐𝑜, 𝑐𝑎]

4.1.4 Inference Details. During inference, the model retrieves the
most relevant charts from a repository C based on 𝑇𝑖 . Then, the
query and charts are all encoded into embeddings ®𝑄 and ®𝐶 , respec-
tively. The similarity between ®𝑄 and ®𝐶 is computed using cosine

similarity: sim(𝑄,𝐶𝑖 ) =
®𝑄 · ®𝐶𝑖

∥ ®𝑄 ∥ ∥ ®𝐶𝑖 ∥
. The top-𝑘 charts with the highest

similarity scores are retrieved and presented as the most relevant
results.

4.1.5 Overall Results. The experimental results demonstrate con-
sistent and significant improvements across all models after fine-
tuning, as shown in Table 2. We can observe that fine-tuning con-
sistently improves performance across all models and metrics. For
instance, FT-Long-CLIP-L achieves substantial gains over Long-
CLIP-L, with R@10 improving from 79.49% to 84.10% on precise
queries and from 74.81% to 80.15% on fuzzy queries. Besides Long-
CLIP Under precise queries, FT-CLIP-DPR shows remarkable gains
(↑4.62% in R@10), while FT-Univl-DR demonstrates even larger im-
provements (↑8.71% in R@10). The enhancement is also significant
for fuzzy queries, where retrieval is inherently more challenging.
For example, FT-Long-CLIP-B substantially improves across all met-
rics, with NDCG@10 increasing by 9.08%. These results strongly
indicate that fine-tuning effectively enhances the models’ ability
to understand and match precise and fuzzy queries, with notable
improvements in handling complex query variations.

4.2 Chart-to-table
4.2.1 Test Datasets Overview. We conduct evaluation experiments
on two chart-to-table datasets: ChartQA [34] and ChartVLM [49].
ChartQA-H contains human-annotated chart-table pairs, ChartQA-
M consists of machine-generated pairs, and ChartVLM provides a
diverse collection of charts from various domains.

4.2.2 Metrics. We evaluate the table extraction performance using
two standard metrics, where higher values indicate better perfor-
mance. Recall measures the proportion of correct data points ex-
tracted from the chart and F1 score provides a balanced measure of
precision and recall.
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Table 2: Experiment results on Text-to-chart retrieval task.

Models Precise Query Fuzzy Query

R@1 R@5 R@10 MRR@10 NDCG@10 R@1 R@5 R@10 MRR@10 NDCG@10

CLIP-DPR [26] 4.10 15.38 20.00 8.90 11.55 5.34 7.63 10.69 6.60 7.54
FT-CLIP-DPR 8.21 19.49 24.62 13.08 15.80 7.63 14.50 19.08 10.97 12.88

↑4.11 ↑4.11 ↑4.62 ↑4.18 ↑4.25 ↑2.29 ↑6.87 ↑8.39 ↑4.37 ↑5.34

UniVL-DR [26] 3.08 11.79 17.44 6.59 9.13 5.34 6.87 9.92 6.26 7.11
FT-UniVL-DR 8.21 17.95 26.15 13.25 16.29 12.21 18.32 20.61 15.08 16.42

↑5.13 ↑6.16 ↑8.71 ↑6.66 ↑7.16 ↑6.87 ↑11.45 ↑10.69 ↑8.82 ↑9.31

Long-CLIP-B [53] 26.67 53.85 62.56 37.99 43.90 22.90 40.46 51.91 30.29 35.33
FT-Long-CLIP-B 38.97 62.05 70.26 49.30 61.30 29.77 50.38 61.83 38.96 44.41

↑12.30 ↑8.20 ↑7.70 ↑11.31 ↑17.40 ↑6.87 ↑9.92 ↑9.92 ↑8.67 ↑9.08

Long-CLIP-L [53] 41.03 75.90 79.49 55.32 55.32 38.93 67.18 74.81 50.99 56.77
FT-Long-CLIP-L 47.18 80.00 84.10 61.23 66.90 41.98 75.57 80.15 55.31 61.40

↑6.15 ↑4.10 ↑4.61 ↑5.91 ↑11.58 ↑3.05 ↑8.39 ↑5.34 ↑4.32 ↑4.63

Table 3: Experiment results on Chart-to-table task.

Models ChartQA-H ChartQA-M ChartVLM

Recall F1 Recall F1 Recall F1

Qwen2-VL [43] 73.75 82.35 47.74 55.52 60.10 59.79
FT-Qwen2-VL 85.59 84.92 73.65 71.40 72.41 76.05

↑11.84 ↑2.57 ↑25.91 ↑15.88 ↑12.31 ↑16.26

Llama 3.2 [7] 63.17 74.58 32.11 42.48 55.73 66.67
FT-Llama 3.2 94.92 94.10 72.13 70.53 83.09 81.42

↑31.75 ↑19.52 ↑40.02 ↑28.05 ↑27.36 ↑14.75

LLaVA-NeXT [25] 18.90 26.13 18.51 26.53 15.84 20.03
FT-LLaVA-NeXT 35.46 39.40 22.53 25.52 40.76 42.21

↑16.56 ↑13.27 ↑4.02 ↑1.01 ↑24.92 ↑22.18

4.2.3 Training Details. We use 85K charts and 85K chart tables
as training data. For chart-to-table tasks, the training objective is
to maximize the conditional probability of the ground truth table
sequence 𝑦 given the input 𝑥 :

max
𝜃

∑︁
(𝑥,𝑦) ∈𝐷

log 𝑃𝜃 (𝑦 |𝑥),

In this formulation, 𝑥 represents the input chart 𝑐 , 𝑦 denotes
the target table sequence table 𝑡 , 𝐷 is the training dataset, and 𝜃
represents the model parameters. At the token level, the objective
is expanded as:

max
𝜃

∑︁
(𝑥,𝑦) ∈𝐷

𝑇∑︁
𝑡=1

log 𝑃𝜃 (𝑦𝑡 |𝑦<𝑡 , 𝑥),

Here, 𝑦𝑡 represents the 𝑡-th token in the target sequence, with
𝑦<𝑡 denoting all tokens before position 𝑡 and 𝑇 being the length
of the target table sequence. This formulation guides the model
to learn the generation of accurate outputs by maximizing the
probability of predicting the next correct token at each time step.

4.2.4 Inference Details. During inference, the model generates the
target table sequence by predicting the next token at each step:

𝑦 = argmax
𝑦
𝑃𝜃 (𝑦 |𝑥) .

At the token level, the inference process is:

𝑦𝑡 = argmax
𝑦𝑡

𝑃𝜃 (𝑦𝑡 |𝑦<𝑡 , 𝑥),

where 𝑦 represents the complete generated table sequence and
𝑦𝑡 denotes the predicted token at position 𝑡 .

4.2.5 Overall Results. The experimental results in Table 3 demon-
strate substantial improvements across all models after fine-tuning.
The most notable improvement is observed with Llama 3.2, where
fine-tuning leads to remarkable gains on ChartQA-H (Recall: from
63.17% to 94.92%, F1: from 74.58% to 94.10%). The improvements are
particularly significant on ChartQA-H, with Qwen2-VL improving
by 11.84% in Recall and 2.57% in F1, and Llama 3.2 achieving even
larger gains of 31.75% in Recall and 19.52% in F1. Even on the more
challenging ChartQA-M dataset, fine-tuning demonstrates clear
benefits, with FT-Llama 3.2 achieving the best performance (Recall:
72.13%, F1: 70.53%). Among all models, FT-Llama 3.2 consistently
achieves the best performance across all datasets, indicating its su-
perior capability in chart understanding and table extraction tasks
after fine-tuning.

4.3 Chart Summary
The training and inference formula for the chart summary task is
the same as that for the chart-to-table task, except that in chart-to-
table, the model’s output is a table sequence. In contrast, in chart
summary, the model’s output is a summary sequence. We use 85K
charts and 85K chart overview captions as training data.

4.3.1 Test Datasets Overview. We evaluate the chart summariza-
tion performance on the ChartVLM [49] dataset, which provides
a comprehensive collection of charts paired with human-written
summaries.

4.3.2 Metrics. We evaluate the summary quality using standard
text generation metrics, including ROUGE-1 [22], ROUGE-2, and
ROUGE-L, which measure the overlap of unigrams, bigrams, and
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Table 4: Experiment results on Chart Summary tasks.

Models ROUGE-1 ROUGE-2 ROUGE-L Meteor Overall

Qwen2-VL [43] 37.70 12.61 23.54 19.93 23.95
FT-Qwen2-VL 41.74 12.62 25.14 29.88 27.10

↑+3.04 ↑+0.01 ↑+1.60 ↑+9.95 ↑+3.15

Llama 3.2 [7] 34.12 8.75 19.43 21.78 21.02
FT-Llama 3.2 40.29 11.74 24.76 27.87 26.42

↑+6.17 ↑+2.99 ↑+5.33 ↑+6.09 ↑+5.40

LLaVA-NeXT [25] 41.56 12.94 25.13 30.74 27.59
FT-LLaVA-NeXT 42.47 13.46 26.11 29.65 27.92

↑+0.91 ↑+0.52 ↑+0.98 ↓-1.09 ↑+0.33

longest common subsequences between generated and reference
summaries, respectively. We also employ Meteor [2] for additional
semantic matching evaluation. The Overall score is calculated as
the average of all metrics, with higher values indicating better
performance.

4.3.3 Overall Results. The experimental results in Table 4 demon-
strate moderate improvements after fine-tuning across most models.
Themost notable improvements are observed in Llama 3.2, with con-
sistent gains across all metrics (Overall score: from 21.02% to 26.42%,
an increase of 5.40%). For Qwen2-VL, significant improvements are
seen in Meteor score (↑9.95%) and ROUGE-1 (↑3.04%), leading to an
overall improvement of 3.15%. Interestingly, LLaVA-NeXT shows
minimal changes after fine-tuning, with slight improvements in
ROUGE scores but a small decrease in Meteor (-1.09%), resulting
in a marginal overall improvement of 0.02%. These results suggest
that while fine-tuning generally enhances summary generation
capabilities, the benefits vary across different models and metrics,
with Llama 3.2 showing the most consistent and substantial im-
provements.

4.4 Chart Description
The training and inference formula for the chart description task is
the same as that for the chart-to-table task, except that in chart-to-
table, the model’s output is a table sequence. In contrast, in chart
summary, the model’s output is a description sequence. We use 85K
charts and 85K chart analysis captions as training data.

4.4.1 Test Datasets Overview. We evaluate the chart description
generation performance on the ChartVLM [49] dataset, where
models are required to generate detailed analytical descriptions
of charts.

4.4.2 Metrics. We employ the same set of evaluation metrics as in
the summarization task: ROUGE-1 [22], ROUGE-2, and ROUGE-L
for measuring n-gram overlap and Meteor [2] for semantic similar-
ity. The Overall score represents the average of all metrics, with
higher values indicating better performance.

4.4.3 Overall Results. The experimental results in Table 5 show
varied but generally positive improvements after fine-tuning. Llama
3.2 demonstrates consistent improvements across all metrics, with
an overall increase of 3.86% (from 26.88% to 30.74%). Notably, LLaVA-
NeXT shows substantial improvement in ROUGE-2 (↑12.46%),

Table 5: Experiment results on Chart Description tasks.

Models ROUGE-1 ROUGE-2 ROUGE-L Meteor Overall

Qwen2-VL [43] 44.56 19.53 33.81 29.88 31.45
FT-Qwen2-VL 43.75 19.85 32.11 37.68 33.85

↓-0.81 ↑+0.32 ↓-1.70 ↑+7.80 ↑+2.40

Llama 3.2 [7] 37.55 12.70 27.37 27.91 26.88
FT-Llama 3.2 41.57 16.55 29.20 34.63 30.74

↑+4.02 ↑+3.85 ↑+1.83 ↑+6.72 ↑+3.86

LLaVA-NeXT [25] 39.17 16.90 29.02 36.79 30.72
FT-LLaVA-NeXT 40.97 29.36 29.36 34.20 33.22

↑+1.80 ↑+12.46 ↑+0.34 ↓-2.59 ↑+2.50

Table 6: Zero-shot experiment results on ChartQA tasks.

Models ChartQA ChartVLM Overall

Qwen2-VL [43] 48.50 53.28 50.87
FT-Qwen2-VL 51.50 51.38 51.43

↑+3.00 ↓-1.90 ↑+0.56

Llama 3.2 [9] 29.50 39.41 33.81
FT-Llama 3.2 39.50 52.65 44.54

↑+10.00 ↑+13.24 ↑+10.73

LLaVA-NeXT [25] 1.50 2.33 1.46
FT-LLaVA-NeXT 29.00 31.36 30.14

↑+27.50 ↑+29.03 ↑+28.68

though with a slight decrease in Meteor (-2.59%), resulting in an
overall gain of 2.50%. Qwen2-VL exhibits mixed performance, with
decreases in ROUGE-1 (-0.81%) and ROUGE-L (-1.70%), but achieves
significant improvement in Meteor (↑7.80%), leading to a positive
overall improvement of 2.40%. These results indicate that while
fine-tuning generally enhances description generation capabilities,
the improvements vary across different aspects of generation qual-
ity, with some models showing stronger improvements in semantic
similarity (Meteor) while others excel in n-gram matching (ROUGE
scores).

4.5 ChartQA
4.5.1 Test Datasets Overview. We evaluate the zero-shot chart ques-
tion answering performance on two datasets, ChartQA [34] and
ChartVLM [49].

4.5.2 Metrics. We evaluate the chart question answering perfor-
mance using accuracy scores, where higher values indicate better
performance. The Overall score is calculated as the average accu-
racy across all three datasets.

4.5.3 Inference Details. For the Chart QA task, we directly utilize
the model fine-tuned on the chart-to-table task without additional
training. The inference process consists of two steps. First, we
generate the table representation from the chart:

𝑡 = argmax
𝑡
𝑃𝜃 (𝑡 |𝑐)
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             3000                 2500                        
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2700 2200Hospitals

2700

Chart Description Task

Chart-to-Table Task Chart QA Task

Llama3.2:Llama3.2:

Llama3.2:

ChartCards+Llama3.2:

ChartCards+Llama3.2:

ChartCards+Llama3.2:

Prompt: 

Prompt: 

Describe the detailed information and main 
findings shown in the chart.

What percentage of Republicans would be less likely 
to support a candidate with extensive D.C. experience?

Prompt:  Convert this chart into data table.
Characteristic   North America   Europe    Asia    South America

Hospitals                 750                   650         600               500

Medical Center          1000                  900        1100                   900

2200

Entity           North America   Europe    Asia    South America

This chart shows the distribution of social media platform use in the United States in 2023. Facebook is the 
most popular platform with 38% of users, followed by YouTube with 19% of users. Instagram came in third 
with 12% of users. Twitter and Reddit each account for 8% of the market. Snapchat and LinkedIn are used by 
5% each. In addition, other platforms not listed accounted for 5% of the user share. Overall, Facebook and 
YouTube dominate the social media platforms in the United States, while other platforms also have a certain 
user base, but relatively small.

In the pie chart showing social media platform usage in the USA in 2023, 
. Surprisingly, it's interesting to note that Facebook continues 

to dominate,  YouTube surpasses Twitter with 
, and Reddit claims 8%, LinkedIn and Snapchat account for 5% 

each, with other platforms taking a combined share of 10%.

Facebook holds the second-largest 
share with 38%, followed by Instagram at 19%

 with usage largely driven by younger demographics under 30.
12% making it the third-most used platform. 

Figure 4: Case study demonstrating the effectiveness of MetaChart in improving MLLM understanding and performance across
various chart analysis tasks.

Then, we use both the chart and its generated table as input
to verify the quality of the dataset. The inference process can be
formulated as:

𝑎 = argmax
𝑎
𝑃𝜃 (𝑎 |𝑐, 𝑡)

where 𝑎 represents the generated answer, 𝑐 is the input chart im-
age, 𝑡 is the generated table, and 𝑎 is the predicted answer. This zero-
shot inference approach leverages the table-generation capabilities
of the model while incorporating additional prompt information to
guide the answer-generation process.

4.5.4 Overall Results. The experimental results in Table 6 demon-
strate varying degrees of improvement after fine-tuning across
different models. LLaVA-NeXT shows the most dramatic improve-
ments, with substantial gains across all datasets (Overall: from 1.46%
to 30.14%, ↑28.68%) . Llama 3.2 demonstrates consistent improve-
ments across all datasets, achieving an overall improvement of
10.73%, with the strongest gain on ChartVLM (↑13.24%). In contrast,
Qwen2-VL shows mixed results, with improvement on ChartQA
(↑3.00%) but slight decreases on ChartVLM (-1.90%), leading to a
marginal overall improvement of 0.56%. These results suggest that
while fine-tuning generally enhances zero-shot capabilities, the
benefits vary significantly across different models and datasets.

4.6 Qualitative Results.
As shown in Figure 4, we demonstrate the performance of
MetaChart data augmentation when fine-tuned with Llama 3.2 [7]
for various chart analysis tasks, revealing how fine-tuning with
MetaChart addresses critical gaps in structural and contextual un-
derstanding. In the Chart-to-Description task, the original model

conflates color proximity and label positioning, and even generates
hallucinations (e.g., younger demographics) not supported by visual
cues. After fine-tuning, the model integrates multi-modal context
(e.g., label-text alignment) to resolve color confusion while filtering
out irrelevant text noise. In the Chart-to-Table task, the original
model fails to effectively convert data into a structured table, mis-
representing key values and failing to correctly organize the data
due to issues with structural parsing. The fine-tuned model accu-
rately handles the relationships between different categories (e.g.,
hospitals and other regions), which the original model struggled
with. In the chartQA task, after data augmentation with MetaChart,
the fine-tunedmodel not only parses explicit data from the chart but
also combines contextual semantics, logical reasoning, and noise
resistance to accurately answer complex questions. These results
highlight how MetaChart data augmentation enhances the model’s
ability to correctly process and interpret visual information, signifi-
cantly improving performance in tasks such as chart analysis, table
generation, and reasoning.

5 Conclusion
In this paper, we introduce ChartCards, a chart-metadata genera-
tion framework for multi-task chart understanding. Based on this
framework, we constructed the MetaChart dataset, which offers
a richer selection of chart metadata and higher data quality than
existing datasets of its kind. Experimental results demonstrate that
six models fine-tuned on MetaChart achieve notable performance
improvements, further validating the effectiveness and quality of
the ChartCards framework.
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