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Abstract

Despite significant advances in Multimodal Large Language Models (MLLMs) for1

standard chart understanding, existing models experience significant performance2

degradation when presented with semantically equivalent variants of the standard3

chart, such as standard charts without explicit textual annotations or pictorial4

charts with complex visual elements. This suggests that existing MLLMs rely5

more heavily on textual cues and conventional shapes rather than robust visual6

comprehension. To address this issue, we first introduce ChartPairs, a novel7

dataset consisting of pairs of standard charts and their visually diverse yet seman-8

tically equivalent variants. Leveraging this dataset, we propose ChartAlign, a9

novel instance-level alignment method for image encoders that can be seamlessly10

integrated into existing models without requiring full retraining. Compared to11

traditional distribution-level alignment methods, ChartAlign ensures theoretically12

stronger visual consistency across equivalent charts. Extensive experiments across13

multiple chart-related tasks demonstrate that MLLMs enhanced with ChartAlign14

significantly outperform state-of-the-art baselines on challenging variants.15

1 Introduction16

Charts play a vital role in visualizing complex data and facilitating effective communication in various17

domains, including scientific research [1], decision making [2], and emotional communication[3].18

Recently, Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities19

in understanding and interpreting standard charts, bridging the gap between visual data representations20

and natural language understanding [4, 5, 6, 7, 8].21

Despite these advancements, existing models often struggle with visually diverse yet semantically22

equivalent charts. For example, Wu et al. [9] reports a 23.8% average performance drop when23

textual annotations are removed. Our preliminary experiment results also showed a drop of 22.06%24

among different models when facing artistically stylized charts compared to standard charts. These25

findings suggest that existing MLLMs, especially their image encoders, rely heavily on explicit26

textual annotations and standard visual patterns when recognizing and understanding charts. This27

limits their robustness and generalization capabilities for diverse real-world charts.28

To address these challenges, it is necessary to adapt the models with more diverse charts. However,29

joint finetuning of both vision and language components incurs high computational costs and requires30

extensive data, while language-only tuning neglects critical visual feature extraction capabilities31

required to understand visually diverse charts. Therefore, there is an urgent need for more effective32

and efficient adaptation methods tailored explicitly to enhancing the image encoders’ ability to33

generalize across visually diverse charts.34
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To support this, we first introduce ChartPairs, a carefully constructed dataset containing pairs of35

standard charts and their semantically equivalent counterparts with diverse visual styles. Leveraging36

this dataset, we propose ChartAlign, a novel instance-level alignment method specifically designed37

to improve the robustness of image encoders within MLLMs. Unlike traditional distribution-level38

alignment methods, which may lead to imprecise alignment and negative transfer (i.e., degraded39

performance due to misaligned representations), our instance-level method directly aligns feature40

representations of paired charts. This ensures stronger visual consistency and more precise semantic41

preservation across diverse visual representations, enhancing models’ generalization capabilities42

without requiring costly full retraining. Furthermore, this alignment method can be readily integrated43

into existing MLLMs without requiring full retraining, offering a plug-and-play solution compatible44

with diverse chart-related tasks. The evaluation results demonstrate the effectiveness of our method45

in enhancing generalization to visually diverse charts across multiple tasks and baselines.46

The primary contributions of our work are:47

• We identify and formulate the core challenge that existing MLLMs heavily rely on textual48

annotations and standard shapes, limiting their generalization to visually diverse charts.49

• We construct and release ChartPairs, a novel dataset enabling effective instance-level50

alignment across diverse charts.51

• We propose ChartAlign, a novel instance-level alignment strategy specifically designed to52

enhance the visual comprehension capability of image encoders.53

2 Related Work54

2.1 Chart related MLLMs55

Multimodal large language models (MLLMs) utilize connectors to bridge large language models [10,56

11, 12, 13] and vision encoders [14, 15], enabling enhanced comprehension and instruction-following57

capabilities. Methods such as BLIP2 [16], Flamingo [17], and Qwen-VL [18] employ QFormers58

or Resamplers to align modalities using extensive datasets of image-text pairs. LLaVA [19, 20]59

pioneered the extension of instruction tuning to visual tasks, achieving impressive performance60

with a simple MLP that preserves visual information while refining multimodal alignment. LLaVA-61

HR [21] introduces a Mixture-of-Resolution Adaptation (MRA) framework to enhance the visual62

understanding of MLLMs by adapting to different chart resolutions.63

In the domain of chart understanding, MLLMs have been adapted through various architectural64

innovations. Early approaches like Pix2Struct [22] and MatCha [23] focus on aligning chart content65

with alternative representations such as markdown or tables. DePlot [24] employs a two-stage66

approach by fine-tuning models for table extraction before leveraging LLMs for reasoning, while67

ChartVLM [25] incorporates a discriminator to determine when LLM intervention is necessary.68

Moving toward more integrated solutions, models such as ChartLlama [26] build upon LLaVA’s69

foundation to incorporate diverse chart types and downstream tasks. ChartPaLI [27], ChartAst [28],70

and MMC [29] focus on table-chart alignment. OneChart [8] and ChartMoE [6] align charts with71

structured formats like JSON and Python dictionaries, while ChartMoE utilizes Mixture of Experts72

(MoE) to handle the complexity of chart understanding. To address the challenge of processing73

high-resolution charts efficiently, TinyChart [5] employ token merging strategies that preserve visual74

fidelity while reducing computational demands.75

2.2 Limitations in Chart Verification76

Recent studies highlight critical gaps in chart verification systems. While existing methods leveraging77

OCR and LLMs [30, 31] demonstrate basic fact-checking capabilities, they frequently miss visual78

manipulations like axis truncations or distorted scales due to overreliance on extracted numerical data.79

Even vision-language models [25, 26] exhibit limited sensitivity to visual-data inconsistencies, as80

they prioritize textual/numerical information over graphical semantics [9]. This oversight enables ma-81

licious actors to craft misleading charts with surface-level data plausibility [32, 33], revealing the need82

for frameworks that jointly analyze visual encodings, statistical relationships, and contextual claims.83
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Figure 1: Illustrative examples showing ChartLLaMa’s responses across chart variants. The standard
chart (green) elicits accurate responses, while the standard chart without text (blue), the standard
chart with misleading text (yellow), and the pictorial charts without data labels (pink) yield incorrect
value estimations.

2.3 Discrepancy-based domain adaptation84

Domain Adaptation (DA) enables models trained on a source domain to be effectively transferred85

to a target domain by minimizing the discrepancy between domains. Based on the type of domain86

divergence (distribution shift or feature space difference), DA can be categorized into homogeneous87

and heterogeneous approaches [34].88

Various methods have been proposed to achieve effective domain adaptation. For instance, [35,89

36] introduced the Maximum Mean Discrepancy (MMD) loss to minimize feature distribution90

differences by computing the norm between domain means. Additionally, some approaches focus on91

optimizing network architecture. [37] proposed using weight regularizers to relate corresponding92

layer weights across domains, while [38] employed weakly parameter-shared layers. These methods93

have demonstrated effectiveness in both supervised and unsupervised settings.94

3 Preliminary Analysis: Revisiting MLLMs for Different Chart Variants95

As shown in Figure 1, we evaluated ChartLLaMa [26] using a standard chart (green) and three96

different variants. The results reveal critical limitations that the model performs accurately with97

standard charts but fails to estimate values correctly, indicating overreliance on standard visual98

patterns and explicit labels. Despite explicit instructions to rely solely on visual data, the model99

consistently prioritizes misleading textual labels over contradicting visual evidence. The quantitative100

results in Table 1 further confirm a performance drop of 25.12% and 37.36% when presented with101

standard charts and pictorial charts without textual labels. These findings highlight the urgent need102

to enhance MLLMs’ visual encoding capabilities to better interpret chart semantics across diverse103

visual styles while reducing dependence on textual annotations.104

4 Method105

4.1 Overview106

To overcome the limitations of MLLMs in understanding visually diverse charts, we propose a novel107

framework combining ChartPairs, a dataset of semantically equivalent chart pairs, and ChartAlign,108

an instance-level alignment method for image encoders. As depicted in Figure 2, ChartAlign utilizes a109

teacher encoder (ft) from a pre-trained model and a student encoder (fs) initialized with the teacher’s110

parameters. The student encoder is then optimized to align feature representations of paired charts111

within ChartPairs. This framework enhances model visual comprehension capability and robustness112

by enabling image encoders to generalize across charts with varied visual styles, such as text-free or113

pictorial variants, without requiring costly full-model retraining.114
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Figure 2: The overview of our proposed ChartAlign framework. Left: The frozen teacher encoder
guides the student encoder to learn and align features. Right: The aligned features are directly fed
into downstream models, enabling support for diverse tasks.

4.2 ChartPairs115

4.2.1 Chart Variants116

Following the preliminary analysis, our study focuses on the following four chart variants: standard117

charts with labels (Cs,l), standard charts without labels (Cs,n), pictorial charts with labels (Cp,l), and118

pictorial charts without labels (Cp,n). Note that our framework can be easily extended to include119

more variants.120

4.2.2 Chart Generation121

The key to constructing ChartPairs is to generate semantically equivalent chart pairs with different122

visual styles. To achieve this, we simultaneously employ two pipelines: a Pictorial-to-Standard (P2S)123

pipeline that first constructs pictorial charts through generative AI and then extracts the equivalent124

standard charts, and a Standard-to-Pictorial (S2P) pipeline that first renders standard charts and125

then transforms them into pictorial ones. This dual-pipeline architecture addresses fundamental126

limitations inherent to each individual one: the P2S method excels at producing visually coherent127

and aesthetically pleasing charts but struggles with precise data fidelity, while the S2P method offers128

perfect data fidelity but may lack aesthetics and creativity. By developing both pipelines in parallel,129

ChartPairs contains more diverse charts and also provides users with flexibility to prioritize either of130

them if they have specific needs in their applications.131

Pictorial-to-Standard (P2S) Pipeline. The P2S pipeline comprises three stages: (1) diffusion-132

based pictorial charts generation, (2) salient visual component segmentation, and (3) chart variants133

generation. Specifically, it first utilizes Flux [39] to generate initial pictorial chart prototypes This134

method, despite its visual coherence and aesthetics, usually exhibits two critical artifacts: inconsistent135

textual annotations and visual element overlap. To resolve these issues, we introduce a language-136

driven semantic segmentation method to extract visual components and remove textual labels and axes,137

where DINO [40] performs semantic component detection and SAM-2 [41] executes pixel-precise138

segmentation. Based on the segmentation results, we calculate the bounding box of each element139

and reconstruct the original data, which allows us to generate the four chart variants by adding the140

correct axes and optional textual annotations to processed pictorial charts and standard charts.141

Standard-to-Pictorial (S2P) Pipeline. Despite the P2S pipeline’s ability to generate visually142

appealing charts, it sometimes fails to accurately represent data values due to segmentation errors,143

which may lead to potential misinterpretations. To overcome this, we also developed an S2P pipeline144

that ensures precise data fidelity by first rendering standard charts and then converting them into145

pictorial ones. Since the generation of standard charts with and without textual annotations is146

straightforward, we focus on the pictorialization process, which consists of the following two stages:147

Retrieve Relevant Visual Elements.148
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4.2.3 Paired Chart Construction149

Following the chart generation, we explain how we construct paired charts to enhance model capability.150

Specifically, for each ordered pair (Xsource, X target), the teacher encoder processes the source chart151

(Xsource) to extract features that guide the student encoder in learning to process the target chart152

(X target). In this work, we construct paired charts to handle two key scenarios: label-agnostic chart153

understanding and pictorial chart understanding.154

Label-agnostic Chart Understanding. To train models capable of analyzing charts without relying155

on textual annotations, we create pairs where standard charts without labels (Cs,n) serve as the source,156

paired with each of the other three chart variants (Cs,l, Cp,n, Cp,l) as targets:157

Dlabel-agnostic = {(Cs,n
i , Cs,l

i ), (Cs,n
i , Cp,n

i ), (Cs,n
i , Cp,l

i )}Ni=1. (1)

Finetuning image encoders on this dataset encourages models to disregard data labels and pictorial158

elements, focusing solely on the underlying visual representation of data. This is particularly159

important because it allows models to identify misleading or manipulated charts by relying on the160

pure visual structure, independent of potentially inaccurate or deceptive textual annotations.161

Pictorial Chart Understanding. To enable MLLMs to understand pictorial charts, we create pairs162

where standard charts (Cs,n, Cs,l) serve as the source and pictorial charts (Cp,n, Cp,l) as the target:163

Dpictorial = {(Cs,n
i , Cp,n

i ), (Cs,l
i , Cp,l

i )}Ni=1. (2)

Note that within each pair, the source standard chart and the target pictorial chart either both include164

data labels or both exclude them. This design is made to better leverage the capability of the original165

model in understanding charts with textual annotations. In other words, all such pairs share identical166

underlying data distributions but differ solely in their visual presentation styles.167

4.3 ChartAlign168

After constructing paired charts, we train the student encoder to look beyond visual differences and169

recognize the same underlying data. The objective function is to align the features of target images170

produced by the student encoder with the features of source images produced by the teacher encoder.171

The total loss function Ltotal is hence defined as:172

Ltotal = λ1Lalign + λ2Lconsistent, (3)

where Lalign is the feature alignment loss applied to the source-target pairs (xsource
i , xtarget

i ):173

Lalign =
1

N

N∑
i=1

∥fs(xtarget
i )− ft(x

source
i )∥22, (4)

where fs, ft are the student and teacher encoder, respectively, and Lconsist is the consistency loss174

only applied to the source images:175

Lconsistent =
1

N

N∑
i=1

∥fs(xsource
i )− ft(x

source
i )∥22. (5)

This consistency term serves two crucial purposes. First, it maintains stable representations for176

standard charts to preserve downstream task performance because those parameters are frozen.177

Second, it helps prevent the student encoder from generating collapsed feature representations that178

might artificially inflate alignment scores.179

Here, λ1 and λ2 are weights that balance feature alignment and consistency preservation. To effec-180

tively balance these two terms, we employ Dynamic Weight Averaging (DWA) [42], which dynami-181

cally adjusts weights based on the difficulty of each task. Specifically, we first compute the loss ratio182

between consecutive epochs for each task wk,t−1 = Lk,t−1/Lk,t−2, and then derive the weights by ap-183

plying an exponential mapping normalized across tasks λk,t = exp(wk,t−1/T )/
∑

i exp(wi,t−1/T ),184

where T is a temperature parameter controlling task coupling and set as 2 in our implementation.185
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4.4 Justification for Instance-Level Alignment186

Traditional domain adaptation techniques often focus on aligning the marginal feature distributions187

between the source and target domains. This is typically achieved by optimizing an objective such as:188

minθ Ltask(X
source; θ) + λ ·D(P (fθ(X

source)), P (fθ(X
target))), where fθ is a feature extractor, and189

D(·, ·) is a divergence measure that quantifies the difference between source feature distribution and190

target feature distribution. Our proposed method takes a more direct path by constructing explicit pairs191

of source and target instances (xsource
i , xtarget

i ) and minimizing the distance between their respective192

feature representations, which brings two benefits over distribution-level alignment.193

First, while the distribution-level alignment ensures that the distribution P (fθ(X
source)) ≈194

P (fθ(X
target)), it does not guarantee the alignment of the crucial conditional distributions P (Y |195

fθ(X
source)) and P (Y | fθ(X target)). Therefore, the model learned on the source domain may not be196

readily applicable to the target domain.197

Second, it avoids negative transfer for paired instances. Traditional distribution-level alignment198

will potentially produce erroneous alignments where charts are close in a feature projection but199

are semantically disparate. By focusing on specific, pre-defined pairs believed to be semantically200

equivalent, our method ensures that these particular cross-domain counterparts are mapped close201

together in the learned feature space.202

5 Experiments203

5.1 Implementation Details204

During the alignment process, we freeze the teacher vision encoder and only update the student vision205

encoder. At inference time, the optimized student vision encoder is employed for feature extraction206

to feed the downstream language model. All training processes are done on 4 × GTX 4090 GPUs in207

less than 5 hours. Refer to the Appendix 8.1 for more details.208

5.2 Dataset209

Following the pipeline introduced in Section 4.2.2, we developed ChartPairs, which contains 4,616210

charts across four primary chart types: bar chart (2716), pie chart (900), line chart (500), and211

scatter plot (500). To ensure unbiased evaluation, we split ChartPairs into non-overlapping training212

(3,922 charts) and test (694 charts) sets. Each chart includes variations based on two factors: visual213

presentation style (standard, pictorial) and data label configuration (correct labels, no labels).214

To evaluate model performance on downstream tasks, we also established the ground truth results215

for the different chart-related tasks. Our evaluation focuses on two mainstream tasks, Chart2Table216

and ChartQA. The ground truth for Chart2Table is the original data table, which can be naturally217

obtained during the data construction process. For ChartQA tasks, we carefully designed question-218

answer pairs targeting different aspects of chart comprehension, including numerical value extraction,219

extreme value identification, and distribution analysis. The questions are generated through a two-220

stage process: we first create template-based questions using rule-based algorithms based on chart221

metadata, and then refine the description with GPT-4o-mini to improve linguistic variety while222

preserving evaluation objectives. The detailed statistics of the dataset, all templates and prompts223

employed in the construction process, and representative examples are presented in the supplemental224

material.225

5.3 Baseline Methods226

To comprehensively evaluate our method’s generalizability, we consider both general-purpose227

MLLMs and specialized chart understanding models in our evaluation. For general-purpose models,228

we incorporated three LLaVa variants (LLaVa-HR-7b, LLaVa-HR-13b [21], and LLaVa1.6-13b [43])229

because they are representative and widely adopted multimodal architectures. We also include230

Qwen2.5-VL-7b [18], which demonstrates state-of-the-art performance on various vision-language231

benchmarks. For specialized chart understanding models, we include Matcha [23], which implements232

a highly efficient, lightweight architecture specifically optimized for chart interpretation tasks. We fur-233

ther included four language model-based models: ChartLLaMa [26], TinyChart [5], ChartInstruct [7],234
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Model Param. Pictorial Chart Standard Chart Overall avg.w/ dl w/o dl avg. w/ dl w/o dl avg.
General-purpose Multi-modal Large Language Models
LLaVa-HR-7b 0.5b+6.8b 26.34 11.07 18.71 27.67 11.50 19.59 19.15
LLaVa-HR-13b 1.2b+13b 32.57 11.34 21.96 32.78 12.40 22.59 22.28
LLaVa1.6-13b 0.3b+13b 52.05 23.90 37.98 58.54 39.12 48.83 43.41
Qwen2.5-VL-7b 0.7b+7.6b 88.29 45.98 67.14 89.78 78.77 84.28 75.71
Qwen2.5-VL-7b (+Ours) 0.7b+7.6b 90.74 76.42 83.58 91.06 78.13 84.60 84.09
Specialized Chart Understanding Models
ChartLLaMa 0.3b+13b 44.33 15.81 30.07 53.17 28.05 40.61 35.34
Matcha 92m+190m 32.84 30.12 31.48 44.70 42.84 43.77 37.63
Matcha (+Ours) 92m+190m 44.81 41.03 42.92 45.29 41.94 43.62 43.27
TinyChart 0.4b+2.8b 54.34 27.67 41.01 74.77 60.99 67.88 54.45
TinyChart (+Ours) 0.4b+2.8b 54.12 27.20 40.66 74.77 61.15 67.96 54.31
ChartInstruct 74m+6.8b 53.49 26.77 40.13 67.54 57.74 62.64 51.34
ChartInstruct (+Ours) 74m+6.8b 66.74 51.30 59.02 66.90 55.56 61.23 60.13
ChartMLLM 1.2b+13b 61.31 28.26 44.79 70.52 62.96 66.74 55.77
ChartMLLM (+Ours) 1.2b+13b 70.57 63.70 67.14 70.46 64.66 67.56 67.35

Table 1: Performance comparison of models in the ChartQA task. Results are reported for both
Pictorial and Standard charts with and without data labels. Param. indicates the parameter count of
vision encoder and other components (mainly from LLM + few from MLP connector).

and ChartMLLM [4]. These models demonstrate superior performance on chart-related downstream235

tasks after training on various charts.236

5.4 Evaluation Metrics237

We evaluate model performance using established metrics for ChartQA task and Chart2Table task.238

ChartQA Metric. For the ChartQA task, we employ Relaxed Accuracy as our primary evaluation239

metric following [44, 45]. Non-numeric answers use exact string matching after conversion to240

lowercase. Percentage answers are standardized to a 0-100 scale. Numerical answers are considered241

correct if it is within 10% of the gold answer, i.e., |y − ŷ|/|y| ≤ 0.1.242

Chart2Table Metric. For the Chart2Table task, we adopt the Relative Mapping Similarity (RMS)243

proposed in DePlot [24]. RMS extracts a similarity matrix between predicted and ground truth244

tables identifying minimal cost matching, which evaluates how effectively the model extracts the245

underlying data considering both cell values and structural alignment. Afterwards, we compute F1246

score according to the similarity matrix following DePlot [24].247

5.5 Results248

ChartQA Task. Table 1 compares ChartAlign against various ChartQA models. For general-249

purpose MLLMs, LLaVa variants show limited chart understanding capability (avg: 19.59%-48.83%),250

with severe performance degradation on pictorial charts without labels (11.07%-23.90%). While251

Qwen2.5-VL-7b achieves substantially better performance (avg: 75.71%), but still exhibits consid-252

erable weakness on pictorial charts without labels (45.98%). Specialized chart models show better253

performance than LLaVa variants with fewer parameters, highlighting the benefits of domain-specific254

training. However, they also struggle with pictorial charts and standard charts without labels. After255

incorporating with ChartAlign, most baseline methods exhibit significant improvement on pictorial256

chart understanding and maintain comparable performance on standard charts. Even the best perform-257

ing model, Qwen2.5-VL-7b, shows meaningful gains: slight improvement on standard charts (84.28%258

→ 84.60%) and substantial improvement on pictorial charts (67.14% → 83.58%), especially on259

pictorial charts without labels (45.98% → 76.42%). Similar phenomena can also be observed when260

applying ChartAlign into specialized chart understanding models. ChartMLLM, the top performer261

among specialized models, exhibits significant performance gains in pictorial chart understanding262

while maintaining stable performance on standard charts when augmented with our method. The only263

exception is TinyChart [5], which uses a dynamic token merging policy in the vision encoder that264

disrupts the visual token matching relationships, making it incompatible with our method.265
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Model Weighting Pictorial Chart Standard Chart
w/ dl w/o dl ave w/ dl w/o dl ave

ChartMLLM - 61.31 28.26 44.79 70.52 62.96 66.74
ChartMLLM (+Ours) fixed 70.57 63.70 67.14 70.46 64.66 67.56
ChartMLLM (+Ours) DWA 69.77 61.69 65.73 70.46 63.23 66.85
Qwen2.5-VL-7b - 88.29 45.98 67.14 89.78 78.77 84.28
Qwen2.5-VL-7b (+Ours) fixed 90.90 76.10 83.50 90.89 77.96 84.43
Qwen2.5-VL-7b (+Ours) DWA 90.74 76.42 83.58 91.06 78.13 84.60

Table 4: Performance comparison of varying multi-task weighting strategies. “fixed” denotes a fixed
weight (λ1, λ2) = (1, 1) and “DWA” denotes dynamic weight averaging.

Model Pictorial Standard
w/ dl w/o dl w/ dl w/o dl

ChartMLLM 68.13 20.78 79.06 69.63
ChartMLLM (+Ours) 87.92 79.82 82.41 73.50

Table 2: Performance comparison of models in the
Chart2Table task.

Chart2Table Task. ChartAlign266

also significantly enhances the267

Chart2Table extraction capabilities.268

Here we compare ChartMLLM,269

which demonstrates state-of-the-art270

performance on this task. As shown271

in Table 2, our method improves272

ChartMLLM’s performance on pictorial charts without labels from 20.78% to 79.82%, and pictorial273

charts with labels from 68.13% to 87.92%. This improvement enables accurate data extraction274

despite complex visual presentations.275

Model Pictorial Standard
Qwen2.5-VL-7b 27.62 31.93
Qwen2.5-VL-7b (+Ours) 71.69 72.01
Matcha 17.51 30.39
Matcha (+Ours) 33.90 35.87
ChartInstruct 21.18 29.22
ChartInstruct (+Ours) 56.09 58.54
ChartMLLM 19.90 26.08
ChartMLLM (+Ours) 61.26 61.36

Table 3: Performance comparison of models when
interpreting charts with misleading labels.

Misleading Charts Understanding. To further276

evaluate the model’s capability to focus on in-277

terpreting visual elements when instructed to278

ignore labels, we test ChartQA performance on279

charts with misleading labels, which are con-280

structed by manipulating the text labels with281

a random number. Specifically, we add addi-282

tional prompts in this task to guide the model283

to answer questions focusing on chart represen-284

tations rather than data labels. The image en-285

coders are fine-tuned using Dlabel-agnostic to steer286

the model’s focus on visual elements rather than287

textual annotation. Table 3 presents the results288

tested on both pictorial and standard charts with misleading data labels. All the models with ChartAl-289

ign achieves similar results on misleading labels compared with the their base models on standard290

chart without data label (e.g., 61.31% vs. 62.96% on ChartMLLM). This consistency also proves that291

our ChartAlign of Dlabel-agnostic can regard charts with data label as those without.292

5.6 Ablation Study293

In ChartAlign, we use Dynamic Weight Averaging (DWA) to balance the alignment loss and con-294

sistency loss. Table 4 reveals how Dynamic Weight Averaging (DWA) impacts performance. DWA295

enables Qwen2.5-VL-7b to achieve superior results across metrics, producing the highest scores296

for both pictorial and standard charts and making it the state-of-the-art across all models. For297

ChartMLLM, DWA performs slightly lower than fixed weights (65.73% vs. 67.14% on pictorial298

charts and 66.85% vs. 67.56% on standard charts), demonstrating that manual parameter tuning only299

provides marginal benefits for this model. This minimal performance difference suggests DWA offers300

comparable results while eliminating the need for extensive hyperparameter optimization among301

different models.302

5.7 Attention Visualization303

To better understand how our ChartAlign method influences the attention patterns of MLLMs, we304

employed attention visualization techniques based on the VLM-Visualizer framework [46]. See305

Appendix 8.3 for the detailed visualization methodology.306
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Figure 3: Visualization of MLLM’s attention on charts. The left and right parts are pictorial charts
with and without labels, respectively. (a)-(c) shows the attention of the original ChartMLLM,
ChartMLLM+ChartAlign adapted to pictorial charts, and ChartMLLM+ChartAlign adapted to label-
agnostic charts.

As shown in Figure 3, our ChartAlign method significantly alters attention patterns in beneficial ways.307

The base model (a) often focuses on decorative elements, while our ChartAlign-enhanced model308

shifts attention from decorative elements to critical data points and inflection points, enabling more309

accurate data extraction despite visually complex presentations. Similarly, the label-agnostic encoder310

(c) demonstrates a clear shift in attention away from textual data labels toward the visual elements311

and the axes of the chart. This confirms that our method successfully guide the model to rely on312

visual data representations rather than textual shortcuts, improving performance on unlabeled charts313

or those with misleading labels.314

6 Limitations315

While our ChartAlign framework demonstrates effectiveness, we acknowledge two areas for re-316

finement. First, potential domain distribution differences exist between our synthetic dataset and317

real-world charts with their nuanced design elements, which may influence generalization to certain318

professional contexts. Second, our method can be further improved for better compatibility with319

feature-based token pruning architectures. While the current approach works well with encoders320

using consistent token representations or even using fixed token pruning (e.g., Qwen2.5-VL), it321

fails to converge when applied to feature-based token merging methods like TinyChart[5]. This322

occurs because the extracted tokens from the source and target sets may differ substantially, causing323

misalignment in the feature matching process.324

7 Conclusion325

In this paper, we addressed a critical limitation of current MLLMs in chart understanding: the326

reliance on textual cues and standard visual elements in charts makes them fail to generalize well327

on semantically equivalent but visually diverse variants. To tackle this, we introduced ChartPairs,328

a dataset of paired charts for facilitating robust visual representation learning. Leveraging this329

dataset, we proposed ChartAlign, a novel instance-level alignment method for image encoders to330

ensure stronger visual consistency and a more faithful preservation of underlying data semantics.331

Our extensive evaluations demonstrate the effectiveness and plug-and-play nature of our method,332

effectively enhancing model capability in label-agnostic chart understanding and Pictorial chart333

understanding. In addition to chart understanding, our framework has the potential to be extended to334

other scenarios that require robust alignment of semantically equivalent instances.335
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8 Appendix530

8.1 Implementation Details531

Parameter ChartMLLM ChartInstruct Matcha Qwen2.5-VL-7B TinyChart
General Training Parameters

Batch Size 16 16 16 16 16
Learning Rate 2e-5 2e-5 1e-5 2e-5 2e-5

Optimizer AdamW AdamW AdamW AdamW AdamW
Weight Decay 0.01 0.01 0.01 0.01 0.01

Training Epochs 2 2 2 2 2
Warmup Steps 0 0 0 0 0

ChartAlign Specific Parameters
λ1, λ2 1,1 DWA 1,1 DWA DWA

Table 5: Training parameters for different models.

Table 5 presents training parameters for our four models. All models converged in 2 epochs with532

identical batch size (16) and optimizer settings, though Matcha uses a lower learning rate (1e-5) than533
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others (2e-5). ChartMLLM and Matcha employ fixed loss weights (1,1) while ChartInstruct and534

Qwen2.5-VL-7B use Dynamic Weight Averaging.535

8.2 More results536

8.2.1 Performance on Different Chart Types537

Figure 4: Performance comparison of Qwen2.5-VL-7B (Base) with and without ChartAlign across
chart types on ChartPairs.

Figure 4 presents a comparative analysis of Qwen2.5-VL-7B’s performance with and without Char-538

tAlign across various chart types in ChartPairs. The results demonstrate significant improvement on539

pictorial bar charts, leveraging the original model’s capabilities on standard bar charts. However,540

pie charts and line charts show only marginal improvements or slight decreases, attributed to the541

original model’s already robust performance on both standard and pictorial variants of these chart542

types. Notably, scatter plots exhibit substantial performance enhancement, which is not inherent to543

this chart type itself, as the model outperforms the base version even on standard scatter plots. We544

attribute this improvement to the alignment of other chart types, particularly line charts, as they share545

similar construction principles.546

8.2.2 Comparison of Different Training Methods547

Pictorial Standard
w/ dl w/o dl w/ dl w/o dl

Base 61.31 28.26 70.52 62.96
LLM 61.11 26.85 68.67 61.00
LLM+V 53.28 24.88 59.83 52.69
Ours 70.57 63.70 70.46 64.66

Table 6: Performance comparison (%) of training strategies using ChartMLLM as the base model.
LLM-only tuning (LLM) uses LoRA to fine-tune only the language component, full model tuning
(LLM+V) combines LoRA for LLM with full parameter tuning of vision encoder, while our ChartAl-
ign approach targets only the vision encoder.

Tab. 6 compares different training approaches using ChartMLLM. Traditional supervised fine-tuning548

(LLM+V) performs substantially worse than the base model (pictorial charts: 61.31% → 53.28%,549

-13.1%↓; standard charts: 70.52% → 59.83%, -15.2%↓). This decline stems from limited training550

data causing overfitting. In contrast, our ChartAlign approach, targeting only the vision encoder551

through knowledge distillation, preserves language capabilities while significantly enhancing visual552

feature extraction (pictorial charts: 61.31% → 70.57%, +15.1%↑).553
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8.3 Visualization Methodology554

To provide deeper insights into how our ChartAlign method affects the model’s attention distribution555

when processing chart images, we developed a comprehensive visualization pipeline based on the556

VLM-Visualizer framework [46]. Our approach extracts and visualizes cross-modal attention patterns557

to reveal what visual elements the model focuses on when generating text about chart data.558

8.3.1 Visualization Process559

The visualization process works in three key stages:560

Stage 1: Vision Encoder Attention Extraction. We extract the attention maps from all transformer561

layers in the CLIP vision encoder and aggregate them across layers. Specifically, for each transformer562

layer l, we compute the attention matrix Al ∈ RN×N , where N is the number of image tokens. These563

attention matrices are then aggregated across all L layers:564

Aagg =

L∑
l=1

Al (6)

This produces a two-dimensional attention score for each image token that can be directly mapped to565

spatial locations in the original image through bilinear interpolation.566

Stage 2: Cross-Modal Attention Integration. During text generation in the LLM, each newly567

generated token ti has attention scores αi ∈ RM toward all previous tokens (including image tokens),568

where M is the total number of tokens in the input sequence. We extract these one-dimensional569

scores and use them as weights to compute a weighted sum of the image token attention maps:570

Hi =

Nimg∑
j=1

αi,j ·Aagg,j (7)

where Nimg is the number of image tokens, and Aagg,j is the attention map for the j-th image token.571

This produces the visualization heatmap Hi for the i-th generated token.572

Stage 3: Response-level Aggregation. To obtain the overall attention distribution for the entire573

response, we average the heatmaps across all generated tokens:574

Hfinal =
1

T

T∑
i=1

Hi (8)

where T is the total number of tokens in the model’s response. This final aggregated heatmap Hfinal575

reveals the model’s overall attention distribution when answering chart-related queries, providing576

insights into which visual elements are most influential for the model’s understanding and reasoning577

process.578

Score Normalization. To mitigate the influence of extreme outliers in the attention distribution, we579

apply a smoothing operation prior to visualization. Specifically, we truncate the upper tail of the score580

distribution by replacing the top five maximum values with the fifth-highest value (Winsorization).581

This preprocessing step ensures more stable color mapping while preserving the relative attention582

patterns across the image. The normalized scores are then projected to a continuous color space for583

visualization.584

9 Potential Social Impact585

9.1 Positive Societal Impacts586

Enhanced Data Accessibility: By improving MLLMs’ ability to interpret visually diverse charts, our587

work can help individuals with visual impairments better understand and utilize chart data, promoting588

equality in information access.589
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Combating Misleading Information: By combining our ChartAlign for text-free analysis with590

standard models, we can identify misleading data labels, helping detect and reduce manipulation in591

data visualizations and combating the spread of misinformation.592

9.2 Negative Societal Impacts593

Technology Dependence: Overreliance on automated chart interpretation may weaken human594

abilities to analyze and think critically about data visualizations.595

Privacy and Security Risks: Enhanced chart understanding capabilities could be used to extract596

information from sensitive documents containing charts, increasing the risk of data breaches.597
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NeurIPS Paper Checklist598

1. Claims599

Question: Do the main claims made in the abstract and introduction accurately reflect the600

paper’s contributions and scope?601

Answer: [Yes] .602

Justification: We have made the main claims in the abstract and introduction to accurately603

reflect the paper’s contributions and scope.604

2. Limitations605

Question: Does the paper discuss the limitations of the work performed by the authors?606

Answer: [Yes]607

Justification: In section 6, we discuss the limitations of the work performed by the authors.608

3. Theory assumptions and proofs609

Question: For each theoretical result, does the paper provide the full set of assumptions and610

a complete (and correct) proof?611

Answer: [NA]612

Justification: We have provided the full set of assumptions and a complete (and correct)613

proof for our theoretical result.614

4. Experimental result reproducibility615

Question: Does the paper fully disclose all the information needed to reproduce the main ex-616

perimental results of the paper to the extent that it affects the main claims and/or conclusions617

of the paper (regardless of whether the code and data are provided or not)?618

Answer: [Yes]619

Justification: We have provided all the information needed to reproduce the main experi-620

mental results of the paper, and we will release the code and data.621

5. Open access to data and code622

Question: Does the paper provide open access to the data and code, with sufficient instruc-623

tions to faithfully reproduce the main experimental results, as described in supplemental624

material?625

Answer: [Yes]626

Justification: We provide open access to the data and code, and sufficient instructions to627

faithfully reproduce the main experimental results.628

6. Experimental setting/details629

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-630

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the631

results?632

Answer: [Yes]633

Justification: We have specified all the training and test details necessary to understand the634

results, and we have provided the code and data.635

7. Experiment statistical significance636

Question: Does the paper report error bars suitably and correctly defined or other appropriate637

information about the statistical significance of the experiments?638

Answer: [No]639

Justification: We do not report error bars in the paper because it is too computationally640

expensive for MLLMs. Also, other outstanding paper related to chart understanding are not641

reporting error bar, e.g.ChartMoE [6] on ICLR 2025.642

8. Experiments compute resources643

Question: For each experiment, does the paper provide sufficient information on the com-644

puter resources (type of compute workers, memory, time of execution) needed to reproduce645

the experiments?646
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Answer: [Yes]647

Justification: We have provided sufficient information on the computer resources needed to648

reproduce the experiments.649

9. Code of ethics650
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Question: Does the paper discuss both potential positive societal impacts and negative656

societal impacts of the work performed?657

Answer: [Yes]658

Justification: We have discussed both potential positive societal impacts and negative societal659

impacts of the work performed in appendix.660

11. Safeguards661

Question: Does the paper describe safeguards that have been put in place for responsible662

release of data or models that have a high risk for misuse (e.g., pretrained language models,663

image generators, or scraped datasets)?664

Answer: [No]665

Justification: We do not think that the data or model in our paper poses a high risk for666

misuse.667

12. Licenses for existing assets668

Question: Are the creators or original owners of assets (e.g., code, data, models), used in669

the paper, properly credited and are the license and terms of use explicitly mentioned and670

properly respected?671

Answer: [Yes]672

Justification: We have properly credited the creators of the assets and included the license673

and terms of use.674

13. New assets675

Question: Are new assets introduced in the paper well documented and is the documentation676

provided alongside the assets?677

Answer: [Yes]678

Justification: We have provided documentation for the new assets.679

14. Crowdsourcing and research with human subjects680

Question: For crowdsourcing experiments and research with human subjects, does the paper681

include the full text of instructions given to participants and screenshots, if applicable, as682

well as details about compensation (if any)?683

Answer: [NA]684

Justification: We do not involve crowdsourcing or research with human subjects in this685

paper.686

15. Institutional review board (IRB) approvals or equivalent for research with human687

subjects688

Question: Does the paper describe potential risks incurred by study participants, whether689

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)690

approvals (or an equivalent approval/review based on the requirements of your country or691

institution) were obtained?692

Answer: [NA]693

Justification: We do not involve research with human subjects in this paper.694
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16. Declaration of LLM usage695

Question: Does the paper describe the usage of LLMs if it is an important, original, or696

non-standard component of the core methods in this research? Note that if the LLM is used697

only for writing, editing, or formatting purposes and does not impact the core methodology,698

scientific rigorousness, or originality of the research, declaration is not required.699

Answer: [NA]700

Justification: We do not use LLMs as an important, original, or non-standard component of701

the core methods in this research.702
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